Announcements

1) EC from Exam I due today
2) HW \#3 is due Thursday

Observation: (complex solutions)
We observed

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

In order to get any complex number, just multiply by a nonnegative constant r !

$$
r e^{i \theta}=\underbrace{r \cos (\theta)}+i \underbrace{\sin \theta}
$$

Real part
Imaginary part of a complex of a complex number number

Suppose y: $\mathbb{R} \rightarrow \mathbb{C}$ is complex valued.
For each $t \in \mathbb{R}, \leftarrow$ " t in $\mathbb{R}^{\prime \prime}$
we can write

$$
y(t)=(\text { real part of } y(t))
$$

$+i$ (imaginary part of $y(t))$
Define $u, V^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
& U(t)=\text { real part of } y(t) \\
& V(t)=\text { imaginary part of } y(t)
\end{aligned}
$$

Observation: If y is a
solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

where $a, b, c \in \mathbb{R}$ and y is complex-valued, then
writing $y(t)=v(t)+i v(t)$,

$$
\begin{aligned}
& a u^{\prime \prime}+b u^{\prime}+c u=01 \\
& a v^{\prime \prime}+b v^{\prime}+c v=0
\end{aligned}
$$

This is true since

$$
\begin{aligned}
& y^{\prime}(t)=v^{\prime}(t)+i v^{\prime}(t) \\
& y^{\prime \prime}(t)=v^{\prime \prime}(t)+i v^{\prime \prime}(t)
\end{aligned}
$$

so

$$
\begin{aligned}
0= & a y^{\prime \prime}+b y^{\prime}+c y \\
= & \left(a u^{\prime \prime}+b u^{\prime}+c u\right)+ \\
& \left(a v^{\prime \prime}+b v^{\prime}+c v\right)
\end{aligned}
$$

This implies that U and v satisfy the equation since a complex number is zero precisely when its real and imaginary parts are zero.

Back to spring problems

A mass weighing 9 lb is a ttached to a spring hanging from the ceiling and comes to rest at its equilibrium position.

At $t=0$, an external
force $F(t)=2 \cos (2 t) 16$ is applied to the system.

If $k=10 \mathrm{lb} / \mathrm{ft}$ and
$b=| | b-\sec / f t$, find
the equation of motion of the mass.

First, if the solution is y,
well be solving

$$
2 \cos (2 t)=9 y^{\prime \prime}+y^{\prime}+10 y
$$

Since the weight is in equilibrium,

$$
y(0)=0, y^{\prime}(0)=0
$$

Step 1: Solve homogeneous system

$$
0=9 y^{\prime \prime}+y^{\prime}+10 y
$$

let $y=e^{r t}$. We get

$$
\begin{aligned}
0 & =9 r^{2}+r+10 \\
r & =\frac{-1 \pm \sqrt{1-4(10)(9)}}{18} \\
& =\frac{-1 \pm \sqrt{-359}}{18} \\
& =\frac{-1 \pm i \sqrt{359}}{18}
\end{aligned}
$$

Then solutions are of the form

$$
\left.\begin{array}{rl}
& \text { the form } \\
C_{1} e^{\left(-\frac{1+i \sqrt{359}}{18}\right) t}+C_{2} e^{(-1-i \sqrt{359}} 18 \\
18
\end{array}\right)
$$

Rewriting, solutions are of the form

$$
\begin{aligned}
& \text { form } \underbrace{\left(C_{1}+C_{2}\right)}_{D_{1}}\left(e^{-\frac{t}{18}} \cos \left(\frac{\sqrt{359} t}{18}\right)\right) \\
& +\underset{D_{2}}{\left(C_{1}-C_{2}\right)} i\left(e^{-\frac{t}{18}} \sin \left(\frac{\sqrt{359} t}{18}\right)\right)
\end{aligned}
$$

Real solutions: (linearly independent)

$$
\begin{aligned}
& y_{1}(t)=e^{-\frac{t}{18}} \cos \left(\frac{\sqrt{359}}{18} t\right) \\
& y_{2}(t)=e^{-\frac{t}{18}} \sin \left(\frac{\sqrt{359} t}{18}\right)
\end{aligned}
$$

Step 2. We have solutions for the homogeneous system, $y_{1}(t)$ and $y_{2}(t)$. Solve the nonhomogeneous system

$$
2 \cos (2 t)=9 y^{\prime \prime}+y^{\prime}+10 y
$$

using variation of parameters:
We wish that a solution Ip to this equation is given by

$$
y_{p}(t)=y_{1}(t) v(t)+y_{2}(t) v(t)
$$

for some functions U and V.

We arrive at the equations

1) $0=v^{\prime}(t) y_{1}(t)+v^{\prime}(t) y_{2}(t)$ and
2) $\frac{2 \cos (2 t)}{9}=u^{\prime}(t) y_{1}^{\prime}(t)+v^{\prime}(t) y_{2}^{\prime}(t)$.

Multiply equation 1) by $-\frac{y_{2}^{\prime}(t)}{y_{2}(t)}$)
and to 2) to get

$$
\frac{2 \cos (\partial t)}{9}=u^{\prime}(t)\left(\frac{y_{1}^{\prime}(t) y_{2}(t)-y_{2}^{\prime}(t) y_{1}(t)}{y_{2}(t)}\right),
$$

$$
\text { so } u^{\prime}(t)=\frac{2 \cos (2 t) y_{2}(t)}{9\left(y_{1}^{\prime}(t) y_{2}(t)-y_{2}^{\prime}(t) y_{1}(t)\right)}
$$

Integrate to get $u(t)$.

$$
\begin{aligned}
y_{1}(t) & =e^{-\frac{t}{18}} \cos \left(\frac{\sqrt{359} t}{18}\right) \\
y_{2}(t) & =e^{-\frac{t}{18}} \sin \left(\frac{\sqrt{359} t}{18}\right) \\
y_{2}^{\prime}(t) & =-\frac{1}{18} e^{-\frac{t}{18}} \sin \left(\frac{\sqrt{359}}{18} t\right) \\
& +e^{-\frac{t}{18}} \cos \left(\frac{\sqrt{359}}{18} t\right)\left(\frac{\sqrt{359}}{18}\right) \\
y_{1}^{\prime}(t) & =-\frac{1}{18} e^{-\frac{t}{18}} \cos \left(\frac{\sqrt{359} t}{18}\right) \\
& -e^{-\frac{t}{18}} \sin \left(\frac{\sqrt{359} t}{18}\right)\left(\frac{\sqrt{559}}{18}\right)
\end{aligned}
$$

